Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 15(4): e1880, 2023.
Article in English | MEDLINE | ID: covidwho-2284722

ABSTRACT

Nanoparticle vaccines are a diverse category of vaccines for the prophylaxis or treatment of various diseases. Several strategies have been employed for their optimization, especially to enhance vaccine immunogenicity and generate potent B-cell responses. Two major modalities utilized for particulate antigen vaccines include using nanoscale structures for antigen delivery and nanoparticles that are themselves vaccines due to antigen display or scaffolding-the latter of which we will define as "nanovaccines." Multimeric antigen display has a variety of immunological benefits compared to monomeric vaccines mediated through potentiating antigen-presenting cell presentation and enhancing antigen-specific B-cell responses through B-cell activation. The majority of nanovaccine assembly is done in vitro using cell lines. However, in vivo assembly of scaffolded vaccines potentiated using nucleic acids or viral vectors is a burgeoning modality of nanovaccine delivery. Several advantages to in vivo assembly exist, including lower costs of production, fewer production barriers, as well as more rapid development of novel vaccine candidates for emerging diseases such as SARS-CoV-2. This review will characterize the methods for de novo assembly of nanovaccines in the host using methods of gene delivery including nucleic acid and viral vectored vaccines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , SARS-CoV-2 , Antigens , Adaptive Immunity , Nanoparticles/chemistry
2.
Advanced Materials ; 34(21):2270160, 2022.
Article in English | Wiley | ID: covidwho-1866500

ABSTRACT

Nanoparticle Vaccines In article number 2200443, Liangzhi Xie, Chengfeng Qin, and co-workers develop a novel bivalent nanoparticle vaccine that confers protection against infection of multiple SARS-CoV-2 variants and Streptococcus pneumoniae. This universal polysaccharide?protein-conjugated vaccine platform provides a powerful tool to fight against cocirculating viral and bacterial pathogens worldwide.

3.
Vaccine ; 40(20): 2833-2840, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1805289

ABSTRACT

The animal-human interface has played a central role in advances made in vaccinology for the past two centuries. Many traditional veterinary vaccines were developed by growing, attenuating, inactivating and fractioning the pathogen of interest. While such approaches have been very successful, we have reached a point where they have largely been exhausted and alternative approaches are required. Furthermore, although subunit vaccines have enhanced safety profiles and created opportunities for combined discrimination between vaccinated and infected animal (DIVA) approaches, their functionality has largely been limited to diseases that can be controlled by humoral immunity until very recently. We now have a new generation of adjuvants and delivery systems that can elicit CD4 + T cells and/or CD8 +  T cell responses in addition to high-titre antibody responses. We review the current vaccine platform technologies, describe their roles in veterinary vaccinology and discuss how knowledge of their mode of action allows informed decisions on their deployment with wider benefits for One Health.


Subject(s)
One Health , Vaccinology , Adjuvants, Immunologic , Animals , Antibody Formation , Vaccines, Subunit
4.
Adv Mater ; 34(21): e2200443, 2022 May.
Article in English | MEDLINE | ID: covidwho-1763176

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has led to millions of deaths worldwide. Streptococcus pneumoniae (S. pneumoniae) remains a major cause of mortality in underdeveloped countries. A vaccine that prevents both SARS-CoV-2 and S. pneumoniae infection represents a long-sought "magic bullet". Herein, a nanoparticle vaccine, termed SCTV01B, is rationally developed by using the capsular polysaccharide of S. pneumoniae serotype 14 (PPS14) as the backbone to conjugate with the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The final formulation of conjugated nanoparticles in the network structure exhibits high thermal stability. Immunization with SCTV01B induces potent humoral and Type 1/Type 2 T helper cell (Th1/Th2) cellular immune responses in mice, rats, and rhesus macaques. In particular, SCTV01B-immunized serum not only broadly cross-neutralizes all SARS-CoV-2 variants of concern (VOCs), including the most recent Omicron variant, but also shows high opsonophagocytic activity (OPA) against S. pneumoniae serotype 14. Finally, SCTV01B vaccination confers protection against challenges with the SARS-CoV-2 mouse-adapted strain and the original strain in established murine models. Collectively, these promising preclinical results support further clinical evaluation of SCTV01B, highlighting the potency of polysaccharide-RBD-conjugated nanoparticle vaccine platforms for the development of vaccines for COVID-19 and other infectious diseases.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta/metabolism , Mice , Nanoparticles/chemistry , Pandemics , Polysaccharides , Rats , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Streptococcus pneumoniae/metabolism
5.
Front Med Technol ; 2: 571030, 2020.
Article in English | MEDLINE | ID: covidwho-1639212

ABSTRACT

DNA vaccines are considered as a third-generation vaccination approach in which antigenic materials are encoded as DNA plasmids for direct in vivo production to elicit adaptive immunity. As compared to other platforms, DNA vaccination is considered to have a strong safety profile, as DNA plasmids neither replicate nor elicit vector-directed immune responses in hosts. While earlier work found the immune responses induced by DNA vaccines to be sub-optimal in larger mammals and humans, recent developments in key synthetic DNA and electroporation delivery technologies have now allowed DNA vaccines to elicit significantly more potent and consistent responses in several clinical studies. This paper will review findings from the recent clinical and preclinical studies on DNA vaccines targeting emerging infectious diseases (EID) including COVID-19 caused by the SARS-CoV-2 virus, and the technological advancements pivotal to the improved responses-including the use of the advanced delivery technology, DNA-encoded cytokine/mucosal adjuvants, and innovative concepts in immunogen design. With continuous advancement over the past three decades, the DNA approach is now poised to develop vaccines against COVID-19, as well as other EIDs.

6.
Front Immunol ; 11: 583077, 2020.
Article in English | MEDLINE | ID: covidwho-886169

ABSTRACT

Despite the success of vaccination to greatly mitigate or eliminate threat of diseases caused by pathogens, there are still known diseases and emerging pathogens for which the development of successful vaccines against them is inherently difficult. In addition, vaccine development for people with compromised immunity and other pre-existing medical conditions has remained a major challenge. Besides the traditional inactivated or live attenuated, virus-vectored and subunit vaccines, emerging non-viral vaccine technologies, such as viral-like particle and nanoparticle vaccines, DNA/RNA vaccines, and rational vaccine design, offer innovative approaches to address existing challenges of vaccine development. They have also significantly advanced our understanding of vaccine immunology and can guide future vaccine development for many diseases, including rapidly emerging infectious diseases, such as COVID-19, and diseases that have not traditionally been addressed by vaccination, such as cancers and substance abuse. This review provides an integrative discussion of new non-viral vaccine development technologies and their use to address the most fundamental and ongoing challenges of vaccine development.


Subject(s)
Betacoronavirus/immunology , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , COVID-19 , COVID-19 Vaccines , Communicable Diseases, Emerging/virology , Coronavirus Infections/immunology , Nanoparticles , SARS-CoV-2 , Vaccination , Vaccines, DNA/immunology , Vaccines, Subunit/immunology , Vaccines, Virus-Like Particle/immunology
SELECTION OF CITATIONS
SEARCH DETAIL